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SEMI-ANALYTIC PRELIMINARY DESIGN OF LOW-THRUST MISSIONS

Javier Roa∗, Anastassios E. Petropoulos†and Ryan S. Park‡

Using generalized logarithmic spirals to approximate low-thrust trajectories, a new
strategy for the design of low-thrust gravity-assist transfers has been developed.
Each transfer leg is defined by a semi-analytic model, and its solution is equiv-
alent to a hybrid Lambert’s problem. The method is suitable for approximating
both flyby and rendezvous transfer legs. A branch and prune algorithm is used
to generate a collection of initial guesses for further optimization. The analytic
nature of the low-thrust model simplifies the pruning step, since dynamical and
operational constraints (like maximum thrust or total ∆v) can be imposed easily.
The solutions obtained with the global search algorithm can be post-processed,
filtered, and ranked according to various criteria. This is where the versatility of
the method resides, because changing the selection criteria does not require a new
search. Selected candidates are then optimized further, in order to generate ac-
tual low-thrust orbits. Two mission design examples are presented: an asteroid
deflection mission using a kinetic impactor, and a rendezvous mission to Jupiter.
These examples are used to analyze the convergence of the optimization stage, in
particular how far from the optimal solution the initial guesses are.

INTRODUCTION

The preliminary design of low-thrust gravity-assist missions typically involves two stages: a
global exploration of the space of solutions in order to generate initial guesses, and the actual op-
timization of candidate orbits. Various techniques are available to conduct searches and evaluate
the performance of different solutions, ranging from heuristic algorithms for global optimization to
direct searches controlling the dimension of the problem.1, 2

Because hundreds of thousands or even millions of missions will be evaluated during the explo-
ration phase, simplified approximate models are often used to model low-thrust legs. In this context,
shape-based methods stand out as interesting tools for approximating continuous-thrust transfers.
The orbit is assumed to have a certain shape, and the thrust profile required to follow such orbit
is computed a posteriori. Exponential sinusoids3 are a good example of a shape-based method
that has been successfully applied to many design scenarios, like the reformulation of Lambert’s
problem in the low-thrust realm.4 A number of reviews of existing analytic solutions and shape-
based algorithms can be found in the literature.5, 6 Pseudo-equinoctial elements exploit the use of
non-osculating elements to model low-thrust trajectories, and result in a flexible design tool.7 An
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interesting alternative is the design in the space of velocities: the orbit is modeled by shaping the
velocity, instead of the actual trajectory.8 This hodographic method allows to find low ∆v transfers
easily. The Q-law algorithm9 focuses on targeting the orbital elements of the arrival body by min-
imizing the so called proximity quotient, Q, which scales with the separation from the target orbit.
This algorithm provides solutions that are very close to optimal.

This paper uses a new analytic solution to a particular continuous-thrust problem, the family of
generalized logarithmic spirals,10 and implements a branch and prune global search algorithm for
generating initial guesses. These initial guesses will then be optimized in a second stage in order
to generate potentially feasible orbits. This analytic solution is briefly introduced in the following
section, and the next section explains the design strategy in detail: how each individual leg is solved,
the rationale behind the branch and prune algorithm, and the selection and optimization of promising
candidates. Two examples are presented in order to investigate how well does the approximate
model represent the optimal solution.

Analytic Low-Thrust Model

Generalized logarithmic spirals are the parametric solutions to the dynamics perturbed by the
acceleration

ap =
µ

r2 [ξ cosψ t + (1 − 2ξ) sinψn], (1)

where µ is the gravitational parameter of the central body, ψ is the flight-direction angle, and t and
n are unit vectors directed along the tangential and normal directions. That is,

t =
v
v
, n = k × t, k =

h
h
, and cosψ =

(r · v)
rv

,

with h = r×v denoting the angular momentum vector. Figure 1 depicts the geometry of the problem
referred to an inertial frame I, and θ is the polar angle. The thrust vector lies in the orbital plane, so
the resulting motion is planar.

Figure 1: Geometrical definition of
the problem

The control parameter ξ can be adjusted as required, and
it affects both the magnitude and direction of the thrust vec-
tor. The complete analytic solution including the spiral Kepler
equation can be found in the Appendix.

The main property of this new family of orbits is the fact
that they admit two integrals of motion, which are extensions
of the laws of conservation of energy and angular momentum.
In particular,

v2 −
2µ
r

(1 − ξ) = K1 (2)

and
rv2 sinψ = K2 (3)

are two first integrals written in terms of the constants of mo-
tion K1 and K2. The former is the generalized energy, and the
latter is the generalized angular momentum. They can be obtained from the initial conditions:

K1 = v2
0 −

2µ
r0

(1 − ξ)

K2 = r0v
2
0 sinψ0.
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The analytic solution to the motion is simplified if the dynamics are formulated using a set of
coordinates intrinsic to the trajectory, (r, v, θ, ψ), instead of polar or Cartesian.

Similarity transformation

Interestingly, there is a similarity transformation that converts the problem defined by the accel-
eration in Eq. (1) into a simpler problem,11

S : (t; r, v, θ, ψ) 7→ (τ; r̃, ṽ, θ, ψ).

The transformation S defines the homothety

τ =
t
β
, r̃ =

r
α
, ṽ =

v

δ
,

in terms of the constants

β =

√
α3

2µ(1 − ξ)
, and δ =

α

β
=

√
2µ(1 − ξ)

α
.

Here, α is a scaling factor (with units of longitude) that can be defined arbitrarily.

Under this transformation the solution to the problem perturbed by the parametric acceleration in
Eq. (1) reduces to the normalized Kepler problem perturbed by ãp,

d2r̃
dτ2 = −

r̃
r̃3 + ãp, with ãp =

cosψ
2r̃2 t. (4)

The transformed acceleration has no components along the normal direction, and it does not depend
explicitly on the control parameter ξ. Once the solution to the simpler problem in Eq. (4) is known,
the solution to the original problem perturbed by (1) is recovered thanks to

t(θ) = βτ(θ), r(θ) = αr̃(θ), v(θ) = δṽ(θ).

DESIGN STRATEGY

The proposed methodology for the preliminary design of low-thrust gravity-assist trajectories
decomposes in two steps:

1. Global search for candidate initial guesses using generalized logarithmic spirals.

2. Local optimization of selected candidates.

The first step divides the problem in individual legs, which are modeled by combining generalized
logarithmic spirals with coast arcs to approximate low-thrust legs. From a practical point of view,
the user should treat the spirals just like conic sections, exploiting the extended conservation laws
in Eqs. (2) and (3). The conserved quantities can be used to “patch” spiral segments with Keplerian
arcs without impulsive maneuvers in the transition points.

Solving each transfer leg reduces to solving a hybrid Lambert problem, combining spiral seg-
ments with coast arcs. The solution is found with an iterative algorithm. The simplicity and robust-
ness of the method make it a useful tool for conducting extensive searches when there is little or
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no information about the optimal solution. A branch and prune algorithm has been implemented to
explore different configurations of the problem, and to select promising solutions.

The search algorithm will generate a collection of candidate solutions that are post-processed and
filtered in order to choose interesting candidates. These selected trajectories will be used as initial
guesses for an actual optimizer. In this case, the global search tool has been integrated with JPL’s
preliminary design software MALTO, which implements the Sims and Flanagan algorithm.12, 13

Semi-Analytic Design of Individual Legs

When no control is available (Keplerian orbits), the in-plane dynamics of the spacecraft are
completely determined by four constants of integration. They are typically the initial conditions
(x0, y0, ẋ0, ẏ0), or (r0, v0, θ0, ψ0) in intrinsic coordinates. Once the departure date is fixed, the initial
position of the spacecraft (r0, θ0) is known from the ephemeris model. Two degrees of freedom
remain, (v0, ψ0). Consequently, the system admits only two additional constrains, i.e. it can only
satisfy two boundary conditions. In a design problem, these two constraints force the position vector
of the spacecraft to match that of the target body at the final time, r(t f ) = r f and θ(t f ) = θ f . Since
a time-explicit analytic solution to Kepler’s problem is not available, it is often useful to pose the
problem using the polar angle θ as independent variable:

r(θ f ; v0, ψ0) − r f = 0

t(θ f ; v0, ψ0) − t f = 0.

The relative configuration of the planets provides the boundary conditions (r0, θ0, r f , θ f , t f ), and this
system of equations can be solved for v0 and ψ0; this is none other than Lambert’s problem. Because
the initial velocity vector defined by (v0, ψ0) will not necessarily coincide with the velocity of the
departure body, an impulsive maneuver that adjusts the velocity will be required. Single-impulse
transfers are the simplest solution to transfer problems.

Figure 2: Geometry of a thrust-
coast leg, with the dashed line
showing the coast arc

Instead of using single-impulse transfers and in order to model
low-thrust trajectories, we assume that the spacecraft first tra-
verses a generalized logarithmic spiral from θ0 to an intermedi-
ate point θA, and then describes a Keplerian orbit from θA to θ f ,
or vice-versa (see Fig. 2). This technique introduces two addi-
tional degrees of freedom in the problem: the control parameter
in the spiral arc ξ, and the position of the intermediate point θA.
Thanks to these two new degrees of freedom the velocity vector
at departure (v0, ψ0) can be fixed, instead of being computed from
the boundary-value problem. In the first leg, the user will be able
to specify the launch v-infinity vector. In the following legs, the
flyby geometry will be free too. The resulting targeting problem
reads

r(θ f ; ξ, θA) − r f = 0 (5)

t(θ f ; ξ, θA) − t f = 0, (6)

and the system is solved for (ξ, θA) using an iterative method and given the initial conditions
(r0, v0, θ0, ψ0) and the boundary conditions (r f , t f ). For robustness, θA is defined as a fraction of
the angle θ f − θ0.
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Rendezvous mode

Note that in the approach described above the velocity of the spacecraft when arriving to the final
body is not constrained and it can take arbitrary values. This methodology will be useful when
the goal of the mission is to perform a flyby of the final body. When a rendezvous is required,
the method needs to be slightly modified. The arrival velocity is forced to match that of the target
body, imposing constraints on v f and ψ f . For the problem not to be over-constrained, two additional
degrees of freedom are required. The transfer leg will be decomposed in three arcs instead of just
two: a generalized logarithmic spiral from θ0 to θA, a coast arc from θA to θB, and a second spiral
segment from θB to θ f , as shown in Fig. 3.

Figure 3: Rendezvous exam-
ple using a thrust-coast-thrust
sequence

Thanks to the conservation laws in Eqs. (2) and (3), the control
parameter along the second arc can be explicitly referred to the pa-
rameters of the previous segments after matching the magnitude of
the velocities:14

ξ2 =
[2a − r f (1 + av2

f )]rB

2a(rB − r f )
, (7)

where a is the semimajor axis of the intermediate Keplerian arc.
This analytic expression eliminates one of the constraint equations,
v(θ f ) = v f , and the rendezvous problem reduces to

r(θ f ; ξ1, θA, θB) − r f = 0 (8)

t(θ f ; ξ1, θA, θB) − t f = 0 (9)

ψ(θ f ; ξ1, θA, θB) − ψ f = 0. (10)

The values of ξ1, θA, and θB are solved numerically.

Types of Variables

The global-search problem is defined by sets of variables of different nature, related to the geom-
etry of the problem and to each particular leg:

Internal variables: they are the boundary conditions defining each leg; the initial conditions (r0, v0,

θ0, ψ0), the flight time t f , and the arrival conditions (r f , θ f ). If the spacecraft is supposed to
rendezvous with the final body, (v f , ψ f ) will also stem from the geometry of the problem.

Search variables: the branch and prune algorithm explores different values of the search variables
in order to optimize a certain cost function. The search variables are the sequence of bodies
to be explored, bi, the dates when the spacecraft reaches each body, ti, the hyperbolic excess
velocity provided by the launcher, v∞,0, and the flyby altitude, hi. Some additional variables
improve the flexibility of the method: the configuration of each leg (either thrust-coast or
cost-thrust in the flyby case), the direction of the flyby (prograde or retrograde), and the total
number of revolutions for each leg. The values of the internal variables are obtained from the
search variables, defining the boundary conditions for each individual leg.

Unknowns: an iterative procedure is required to solve each leg. In particular, Eqs. (5–6) are solved
for (ξ, θA) in the flyby mode, and Eqs. (8–10) are solved for (ξ1, θA, θB) in the rendezvous
case. The value of ξ2 is given by Eq. (7).

The chart in Fig. 4 shows how the variables are organized.
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Figure 4: Schematic representation of the design strategy for a sequence of bodies b0, b1, . . . , bn

Global Search: Branch and Prune

The philosophy behind the design strategy presented in this paper focuses on generating many
candidate solutions, and then optimizing the promising ones. For this reason, we opted for a direct
exploration of the space of solutions instead of relying on heuristic global optimization techniques.
To limit the exponential growth of the dimension of the problem as the number of legs increases,
solutions from the first legs are pruned before advancing to the next legs.

The first leg is defined by the departure date from body b0, t0, the launch v∞, the time of flight, the
number of revolutions, and the sequence of arcs (thrust-coast, coast-thrust, or thrust-coast-thrust).
The search algorithm loops through these search variables and solves, for each combination, the
corresponding leg. This stage will generate N transfer options to the second body b1, arriving at
different dates t j

1. The transfer options can be sorted in terms of their arrival date, so t1
1 is the earliest

arrival date and tN
1 is the latest. The interval [t1

1, t
N
1 ] is then divided in bins of equal size. From

all the trajectories that arrive in a given bin, only the nsel best solutions are selected to be further
explored in the next legs. When using shape-based methods, one of the main problems is that the
thrust or total ∆v may not represent a realistic low-thrust profile, so the optimizer will not converge
to a feasible solution. For this reason, we first discard solutions that present thrust levels over a
certain threshold. Second, we prune trajectories with excessive ∆v. Then, the trajectories are ranked
according to the following metric,

J = λ v∞,0 +

n∑
i=1

∆vi,
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where n is the total number of legs, λ is an arbitrary weight, and

∆vi =

∫ ti

ti−1

ap(t) dt (11)

is the ∆v due to thrust, computed by numerical quadrature.∗ The rest of transfer options are pruned
out, reducing the number of options to be further explored in the next steps.

Figure 5 explains the algorithm graphically. The incoming trajectories from the i-th leg are
grouped in their corresponding bins, represented by blue and yellow boxes. The gray trajectories
are pruned out, and only the green ones are selected for further branching.

Figure 5: Branching and pruning trajectory options using arrival-date bins

Selection and Optimization

The global-search method will typically generate tens of thousands of candidate trajectories.
They are then post-processed in order to rank them given a certain metric. Useful metrics are the
total duration of the mission or the propellant mass fraction. In the post-processing step it is easy to
compute derived quantities and sort the solutions following criteria specific to particular missions,
or to impose operational constraints to discard solutions.

Initial guesses for MALTO are defined by the sequence of bodies, the dates when the bodies are
reached, and the departure/arrival v-infinity vectors. The cost function that MALTO maximizes is
the arrival mass. Combining the global-search tool with MALTO provides a flexible method for
designing orbits, which allows the mission designer to use cost functions different from the arrival
mass without the need for modifying the package for local optimization. Indeed, the metric used
to select the initial guesses will bias MALTO toward solutions that are locally optimal in terms of
mass, and yet close to the optimal solution in terms of the alternative cost function used to select
the initial guess.

∗For the case ξ = 1/2, Roa et al.15 provided an explicit solution to the integral in Eq. (11).
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APPLICATIONS

This section presents two examples of application of the design strategy. The first example fo-
cuses on the design of an asteroid-deflection mission using a kinetic impactor. The second example
seeks low-thrust gravity-assist transfer options to rendezvous with Jupiter. The main goal of these
examples is to investigate how well does the semi-analytic design strategy using generalized loga-
rithmic spirals approximate optimal low-thrust transfers, i.e. how well does the optimizer converge
to a local optima given a certain initial guess.

Asteroid Deflection Mission

The fictitious hazardous asteroid (PDC2017) was generated for the risk-assessment exercise con-
ducted during the 2017 Planetary Defense Conference. The asteroid was supposedly discovered on
March 6, 2017, and its orbit is defined in Table 1. Its nominal impact date is July 21, 2027. Its
orbital period of 3.4 years yields four periapsis passes between discovery and impact: May-2017,
Sep-2020, Feb-2024, and Jun-2027.

Table 1: Orbital elements of
PDC2017 at the date of discovery

Element Units Value

a au 2.24
e – 0.61
i deg 6.30
ω deg 311.55
Ω deg 298.13
M0 deg 337.42

Various multirevolution flyby sequences about Venus (V),
Earth (E), and Mars (M) to reach the asteroid (P) have been ex-
plored using the new global-search tool. In this particular ap-
plication the goal is to maximize the asteroid deflection. The
deflection depends on the ∆v imparted to the asteroid, which can
be modeled with the figure of merit16

J = β(vast · v∞)
msc

mast
.

The coefficient β adjusts the ∆v accounting for ejected mate-
rial from impact, and we will assume β = 2. The initial
mass of the spacecraft is 6000 kg, the density of the asteroid is
ρ = 1500 kg/m3 (porous rock), and its nominal radius is 100 m.
Figures 6 and 7 sort the solutions by date of arrival to the asteroid and potential deflection J. The ter-
minal navigation phase requires the spacecraft to hit the illuminated face of the asteroid,9, 17 which
means that the Sun phase angle φ should be less than 120◦. The solutions in the figures are classified
depending on their phase angle at arrival using different colors. Initial guesses represented by black
dots (φ < 120◦) already satisfy the operational constraint. The earliest launch date that has been
considered is January 1, 2019, which will leave approximately one and a half years for preparing
the mission after discovery.

All four figures show that most of the converged solutions are grouped precisely around the
dates of the two intermediate periapsis passages (Sep-2020 and Feb-2024). The flight time of the
trajectories arriving at the first passage will be less than two years, limiting the transfer options. For
this reason, most of the solutions impact the asteroid when it is around its 2024 periapsis, suggesting
that this is the optimal impact region.

There are schematic views of example orbits overlaid on top of Figs. 6 and 7, with a red dot
marking the impact point. It is worthwhile noticing that flybys are typically exploited for raising
the orbit and rotating it to achieve the adequate phasing. The example of the Mars-Earth flyby
sequence shows an interesting configuration in which a high launch C3 inserts the spacecraft in an
orbit beyond Mars, that is lowered by the Martian flyby and, after one complete revolution, the final
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(a) Venus flyby

(b) Venus-Earth flyby

Figure 6: Low-thrust gravity-assist deflection options for the PDC 2017 scenario
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(a) Earth-Venus flyby

(b) Mars-Earth flyby

Figure 7: Low-thrust gravity-assist deflection options for the PDC 2017 scenario (cont.)
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Figure 8: Optimized asteroid-deflection missions

Earth flyby lowers the apoapsis to intercept the asteroid. Also remarkable is the fact that the EVEP
sequence yields less transfer options, but with a higher deflection merit J.

The most promising candidates obtained with the EMEP and EEVP sequences (highest J and
φ < 120◦) were selected for further optimization. They will be used as initial guesses for optimizing
a mission using MALTO. The spacecraft is launched from the Earth using an Atlas V (551) rocket,
and it is provided with two NEXT ion engines (high-thrust mode) working with P0 = 25 kW.
Figure 8 depicts the optimized solutions in blue, with the thrust vector represented by the red arrows
and empty circles marking the position of the bodies. The gray trajectory with the bodies in green
is the initial guess. The optimizer successfully found a local optima starting from the initial guess,
which is qualitatively similar to the final solution.

Missions to Jupiter

This example requires the spacecraft to rendezvous with Jupiter, which imposes a constraint on
the arrival velocity. When generating initial guesses, the final leg will be defined by the thrust-coast-
thrust sequence, in order to satisfy the boundary conditions. Sequences of one, two, and three flybys
with Venus, Earth, or Mars are considered, allowing up to two complete revolutions per leg.

The Atlas V (551) rocket is chosen as launch vehicle, and the spacecraft is provided with the same
propulsion system as in the previous example (two NEXT engines), operating in high-Isp mode. The
objective function to maximize is the arrival mass.

Figure 10 presents the transfer maps for the single-flyby transfers, EVJ, EEJ, and EMJ, consid-
ering launch dates in a ten-year time span staring in July 2017. The maps show the propellant mass
fraction required for the spacecraft to rendezvous with Jupiter, for different combinations of depar-
ture and arrival dates. In this example, two constraints are imposed on the semi-analytic solutions
to reinforce their feasibility. First, a threshold of 5 N is set on the maximum thrust force. This value
is above the current electric propulsion capabilities, but constraining too much the semi-analytic
method could yield the loss of interesting solutions. On the other hand, without this threshold the
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Figure 9: Mission options to rendez-vous with Jupiter (single flyby)

Table 2: Comparison of several candidate initial guesses with their optimized version

Id Sequence Dep. date Arr. date TOF (days) C3 (km2/s2) m0 (kg) m f (kg)

1guess EVJ 04/11/2020 11/21/2025 2050 9.0 – 0.51m0
1opt EVJ 03/04/2019 03/30/2027 2945 34.0 3066 1446

2guess EEJ 04/02/2018 02/04/2025 2640 0.0 – 0.33m0
2opt EEJ 11/11/2016 03/05/2031 5227 6.2 5449 3021

3guess EMJ 11/11/2025 05/19/2030 1650 20.3 – 0.41m0
3opt EMJ 08/18/2024 08/15/2031 2552 25.0 2494 1575

4guess EMJ 08/29/2022 01/19/2030 2700 9.0 – 0.62m0
4opt EMJ 03/11/2022 04/29/2030 2971 35.2 2982 1455

thrust-coast or coast-thrust sequences could degenerate into very short arcs high thrust values, closer
to impulsive maneuvers than to actual low-thrust transfers. Second, the total ∆v of the mission can-
not exceed ten times the ∆v imparted by a constant thrust of 300 mN for the same mission duration.
This simplified estimate provides a reference to limit the change of the orbit’s energy. The duration
of the mission is limited to 15 years.

The EVJ case reveals two promising launch windows in early 2020 and mid 2027, and the EMJ se-
quence suggests launch windows in early 2018 and 2021. Choosing an Earth flyby yields a number
of high-efficiency solutions scattered throughout the entire time span. Four candidates are selected
for further optimization, and the result is shown in Fig. 10. The blue line is the optimized trajectory,
the small red arrows are the thrust vectors, and the empty circles show where the planets are. Under
the optimal solution, the initial guess is plotted in gray and with green dots for the planets. MALTO
successfully converged to local optima from the selected initial guesses. Case 2 has been selected
as an interesting example of a more complicated multirevolution solution, in which MALTO delays
the arrival date by half a revolution (∼6 yrs), in order to converge to an optimal solution that delivers
a much heavier spacecraft at the cost of exhausting the maximum mission duration allowed. Table 2
helps to compare the initial guesses with the optimal solutions. MALTO can change the launch date
freely, and in these examples the dates were shifted up to 1.5 years.
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The maps in Fig. 11 show mission options involving two gravity assist maneuvers, having ex-
tended the time-span to 20 years. The points marked with an arrow are selected for further opti-
mization, and the resulting optimal transfers with the corresponding initial guess are depicted in
Fig. 10. For the EVVJ sequence, the global search found a resonant double flyby with Venus which
raises the orbit sequentially. The same strategy is adopted by MALTO when optimizing the orbit,
and the optimal solution also exhibits two resonant flybys. For the EVEJ, EEVJ, and EMVJ the
arrival date only changes by a few months, and remains close to the one predicted by the initial
guess. In the EMEJ case, the optimizer added one extra revolution to the transfer to improve its
performance.

CONCLUSIONS

Generalized logarithmic spirals combined with Keplerian arcs provide realistic representations of
low-thrust transfer orbits. The initial guesses are typically close enough to a local optima for the
optimizer to find a feasible solution. The method is based on the same principles as algorithms for
the design of purely impulsive trajectories, which might simplify its implementation. Although the
search tool computes only planar transfers, this limitation is not critical in practical interplanetary
mission design problems targeting low inclination orbits. The arrival dates predicted by the initial
guesses typically differ from the optimized solutions in less than a quarter of the orbital period of
the target body, and the optimizer successfully converges to a local optima.

The versatility of the global search makes the technique useful for tackling mission design prob-
lems of different nature. The solutions found with the search algorithm can be post-processed as
required, and ranked or discarded according to any criteria. Thanks to using analytic solutions
that admit conservation laws, operational constraints can be easily imposed during the global-
exploration stage. The early pruning of unfeasible branches reduces the dimension of the search
problem, speeding up the process.
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APPENDIX: GENERALIZED LOGARITHMIC SPIRALS

First, transform to the new variables

τ =
t
β
, r̃ =

r
α
, ṽ =

v

δ
, κ1 =

K1

δ2 , κ2 =
K2

αδ2 .

Elliptic spirals (κ1 < 0)

Elliptic spirals never to escape the gravitational well of the attracting body. There is a maximum
radius

r̃max =
1 − κ2

(−κ1)
,

which is called the apoapsis of the spiral. The trajectory is given by

r̃(θ)
r̃max

=
1 + κ2

1 + κ2 cosh β(θ)
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Figure 11: Mission options to Jupiter including two flybys
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having introduced the spiral anomaly:

β(θ) =
`

κ2
(θ − θm), with ` =

√
1 − κ2

2.

The angle θm is the orientation of the apoapsis and can be solved from the initial conditions

θm = θ0 ±
κ2

`

∣∣∣∣∣ arccosh
{

r̃max

r̃0
−

1
κ2

(
1 −

r̃max

r̃0

)} ∣∣∣∣∣.
The first sign is chosen if the spiral is initially in raising regime, and the second if it is in lowering
regime.

The time of flight is written as a function of the radial distance:

τ(r̃) − τm = ±
r̃ṽ
κ1

√
1 − sinψ
1 + sinψ

±

√
2[k′2∆Π − κ2∆E]

(−κ1)3/2 √κ2
.

It is referred to the time of apoapsis passage, denoted τm. The solution is given in terms of the
complete and the incomplete elliptic integrals of the second, E(φ, k), and third kinds, Π(p; φ, k),
namely

∆E = E(φ, k) − E(k), ∆Π = Π(p; φ, k) − Π(p; k).

Their argument, modulus and parameter are, respectively,

sin φ =
ṽm

ṽ

√
2

1 + sinψ
, k =

√
−κ1r̃max

2
, p =

κ1r̃max

2κ2
.

The complementary modulus k′ is defined as k′ =
√

1 − k2.

The time of apoapsis passage τm is computed initially from the initial conditions like

τm = ∓
r̃0ṽ0

κ1

√
1 − sinψ0

1 + sinψ0
∓

√
2[k′2∆Π0 − κ2∆E0]

(−κ1)3/2 √κ2
.

The first sign corresponds to raising regime, and the second to lowering regime.

Parabolic spirals (κ1 = 0)

When κ1 vanishes the velocity in the spiral reduces to ṽ = 1/
√

r̃. The trajectory is simply

r̃(θ) = r̃0 e(θ−θ0) cotψ.

The time of flight reduces to

τ(r̃) − τ0 = ±
2
3`

(r̃3/2 − r̃3/2
0 ).

It is referred directly to the initial conditions and requires no further computations.
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Hyperbolic spirals (κ1 > 0)

Hyperbolic spirals are defined by κ1 > 0, which makes

ṽ2
∞ = κ1.

The constant κ1 is equivalent to the characteristic energy C3.

The are two types of hyperbolic spirals: Type I spirals, κ2 < 1, only have one asymptote, which
means that a spiral in raising regime escapes and a spiral in lowering regime falls to the origin;
Type II spirals, κ2 > 1, have two asymptotes. The particle approaches the origin from an asymptote,
reaches a minimum radius r̃min , 0, transitions to raising regime and then escapes along a symmetric
asymptote.

Hyperbolic spirals of Type I

Since there are no axes of symmetry in this family of solutions the spiral anomaly is redefined
with respect to the orientation of the asymptote as

β(θ) = ±
`

κ2
(θas − θ).

Here, θas provides the asymptote. It is defined from the initial conditions

θas = θ0 ±
κ2

`
ln

[
κ2(ζ − ` − κ2 sinψ0 + ` | cosψ0|)

r̃0κ1ζ sinψ0

]
(12)

in terms of the parameter ζ = 1 + `.

The equation of the trajectory is

r̃(θ) =
ζ`2/κ1

sinh β
2

[
2ζ sinh β

2 + (ζ2 − κ2
2) cosh β

2

] .
The time of flight for the case κ1 > 0 and κ2 < 1 becomes

τ(r̃) = κ4 ±

{
r̃ṽ
κ1

√
1 + sinψ
1 − sinψ

−

√
2 {E − (1 − p)Π}

√
κ2

κ3/2
1

}
written in terms of a constant κ4, which is easily solved by particularizing the previous equation at
τ = 0. The solution is given in terms of the incomplete elliptic integrals of the second and third
kinds, E = E(φ, k) and Π = Π(p; φ, k), with:

sin φ =

√
κ1r̃ sinψ

pκ2(1 − sinψ)
, k =

1
2

√
2(1 + κ2), p =

1 + κ2

2κ2
.

Hyperbolic spirals of Type II

The periapsis radius takes the form

r̃min =
κ2 − 1
κ1

.
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The periapsis of the spiral defines an axis of symmetry, oriented as θm:

θm = θ0 ∓
κ2

`

{
π

2
+ arctan

[
1 − κ2 sinψ0

` | cosψ0|

]}
.

As always, the first sign corresponds to raising regime and the second to lowering regime. With this
angle the spiral anomaly is defined as

β(θ) =
`

κ2
(θ − θm).

The parameter ` is redefined as ` =

√
κ2

2 − 1 for the signs to be compatible.

The equation of the trajectory is

r̃(θ)
r̃min

=
1 + κ2

1 + κ2 cos β(θ)

Due to the denominator in this expression two asymptotes appear naturally,

θas = θm ±
κ2

`

{
π

2
+ arctan

1
`

}
.

The particle escapes to infinity along the asymptote defined by the (+) sign, and comes from infinity
along the asymptote defined by the (−) sign.

Finally, the time of flight reads

τ(r̃) − τm = ∓

{
(κ2 + 1)κ2E − κ1r̃min[κ2F + Π]

κ1
√
κ1κ2(κ2 + 1)

+
1

κ3/2
1

arcsinh

 √
κ1r̃(r̃ṽ2 − κ2)√

2κ2r̃ṽ2 + (r̃ṽ2 − κ2)

 − ṽ

κ2
1

√
r̃2ṽ4 − κ2

2

}
. (13)

It is given in terms of the incomplete elliptic integrals of the first, F ≡ F(φ, k), second, E ≡ E(φ, k),
and third kinds, Π ≡ Π(p; φ, k). The argument of the elliptic integrals in this case is

sin φ =

√
(1 − sinψ)

k
√
κ2 − sinψ

, k =

√
2

κ2 + 1
, p =

1
κ2
.

The time of periapsis passage τm can be easily solved from Eq. (13) particularized at τ = 0.

Transition between Type I and Type II hyperbolic spirals

Hyperbolic spirals of Type I have been defined for κ2 < 1, whereas κ2 > 1 yields hyperbolic
spirals of Type II. In the limit case κ2 = 1 the equations of motion simplify noticeably; the resulting
spiral is

r̃(θ) =
2

κ1β(β ∓ 2)
In this case the angular variable β(θ) is defined with respect to the orientation of the asymptote. That
is

β = θ − θas.
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The asymptote is fixed by

θas = θ0 ∓

1 − √
1 +

2
κ1r̃0

 .
The time of flight is no longer given by elliptic integrals. It reduces to

τ(r̃) − τ0 = ±
1

κ3/2
1

Ξ − Ξ0 +
1
2

ln

2(r̃0ṽ
2
0 + Ξ0) + 1

2(r̃ṽ2 + Ξ) + 1


 .

The auxiliary parameter Ξ = Ξ(r̃) reads Ξ(r̃) = ṽ
√

r̃(r̃ṽ2 + 1). The equation for the time of flight has
been referred directly to the initial conditions for convenience.
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